LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Carbon Dioxide Emissions and Their Driving Forces of Land Use Change Based on Economic Contributive Coefficient (ECC) and Ecological Support Coefficient (ESC) in the Lower Yellow River Region (1995–2018)

Photo from wikipedia

Land use change is the second largest source of greenhouse gas emissions after fossil combustion, which can hurt ecological environment severely. Intensive study on land use carbon emissions is of… Click to show full abstract

Land use change is the second largest source of greenhouse gas emissions after fossil combustion, which can hurt ecological environment severely. Intensive study on land use carbon emissions is of great significance to alleviate environmental pressure, formulate carbon emission reduction policy, and protect ecological development. The lower Yellow River area is an important area of economic development, grain cultivation, and agricultural production in China. Land use change has significant economic, environmental, and ecological impacts in this region. Deep study of land used carbon emissions and its influencing factors in the lower Yellow River area is not only of great significance to the environmental improvement in the Yellow River basin, but also can provide references for the research of other basins. Based on this, this paper studies the land use carbon emissions of 20 cities in the lower Yellow River area from 1995 to 2018. The results showed that from 1995 to 2018, the land use change was characterized by the decrease of the ecological land and the increase of the built-up land significantly. The overall carbon emission of the lower Yellow River area is increasing, and the built-up land is the main factor that leads to the increase of carbon emission, which can be also proven by the analysis of the Stochastic Impacts by Regression on Population, Affluence, and Technology (STIRPAT) model. The economic contributive coefficient (ECC) and ecological support coefficient (ESC) of carbon emission in the lower Yellow River area show a trend of high in Zhengzhou, Jinan, and Zibo and low in Zhoukou, Shangqiu, and Heze, and there was no significant changes during the study period, which indicates that each city did not achieve the coordinated development of the ecological economy. Finally, analysis results of the STIRPAT model indicated that the area of built-up land had the greatest impact on land use carbon emissions, followed by tertiary industry, whereas per capita gross domestic product (GDP) had the smallest impact. For every 1% increase in the area of built-up land, carbon emissions increased by 1.024%. By contrast, for every 1% increase in the contribution of tertiary industry to the GDP and per capita GDP, carbon emissions decreased by 0.051% and 0.034%, respectively. According to the study, there are still many problems in the coordinated development of economy and ecology in the lower Yellow River area. The lower Yellow River area should control the expansion of built-up land, afforestation, development of technology, reduction of carbon emissions, and promotion of the high-quality development of the Yellow River Basin.

Keywords: yellow river; carbon; lower yellow; land; area

Journal Title: Energies
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.