LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Design Synchronous Generator Using Taguchi-Based Multi-Objective Optimization

Photo from wikipedia

The extensive use of finite element models accurately simulates the temperature distribution of electrical machines. The simulation model can be quickly modified to reflect changes in design. However, the long… Click to show full abstract

The extensive use of finite element models accurately simulates the temperature distribution of electrical machines. The simulation model can be quickly modified to reflect changes in design. However, the long runtime of the simulation prevents any direct application of the optimization algorithm. In this paper, research focused on improving efficiency with which expensive analysis (finite element method) is used in generator temperature distribution. A novel surrogate model based optimization method is presented. First, the Taguchi orthogonal array relates a series of stator geometric parameters as input and the temperatures of a generator as output by sampling the design decision space. A number of stator temperature designs were generated and analyzed using 3-D multi-physical field collaborative finite element model. A suitable shallow neural network was then selected and fitted to the available data to obtain a continuous optimization objective function. The accuracy of the function was verified using randomly generated geometric parameters to the extent that they were feasible. Finally, a multi-objective genetic optimization algorithm was applied in the function to reduce the average and maximum temperature of the machine simultaneously. As a result, when the Pareto front was compared with the initial data, these temperatures showed a significant decrease.

Keywords: finite element; synchronous generator; multi objective; design synchronous; optimization

Journal Title: Energies
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.