LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The Zr-Doped CaO CO2 Sorbent Fabricated by Wet High-Energy Milling

Photo by mbrunacr from unsplash

We fabricated the Zr-doped CaO sorbent for high-temperature CO2 capture by the wet high-energy co-milling of calcium carbonate and natural zirconium dioxide (baddeleyite) for the first time. The morphology of… Click to show full abstract

We fabricated the Zr-doped CaO sorbent for high-temperature CO2 capture by the wet high-energy co-milling of calcium carbonate and natural zirconium dioxide (baddeleyite) for the first time. The morphology of the material was examined by scanning electron microscopy, energy-dispersive X-ray analysis and X-ray diffraction. Its CO2 uptake capacity was determined using thermogravimetric analysis. After 50 carbonation–calcination cycles, the Zr-doped CaO sorbent characterized by a high enough CO2 uptake capacity of 8.6 mmol/g and unchanged microstructure due to CaZrO3 nanoparticles uniformly distributed in the CaO matrix to prevent CaCO3 sintering under carbonation. The proposed easy-to-implement CaO-based sorbents fabrication technique is promising for industrial application.

Keywords: doped cao; energy; high energy; energy milling; co2; wet high

Journal Title: Energies
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.