LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Off-Grid DoA Estimation on Non-Uniform Linear Array Using Constrained Hermitian Matrix

Photo from wikipedia

In this paper, an off-grid direction-of-arrival (DoA) estimation algorithm which can work on a non-uniform linear array (NULA) is proposed. The original semidefinite programming (SDP) representation of the atomic norm… Click to show full abstract

In this paper, an off-grid direction-of-arrival (DoA) estimation algorithm which can work on a non-uniform linear array (NULA) is proposed. The original semidefinite programming (SDP) representation of the atomic norm exploits a summation of one-rank matrices constructed by atoms, where the summation of one-rank matrices equals a Hermitian Toeplitz matrix when using the uniform linear array (ULA). On the other hand, when the antennas in the array are placed arbitrarily, the summation of one-rank matrices is a Hermitian matrix whose diagonal elements are equivalent. Motivated by this property, the proposed algorithm replaces the Hermitian Toeplitz matrix in the original SDP with the constrained Hermitian matrix. Additionally, when the antennas are placed symmetrically, the performance can be enforced by adding extra constraints to the Hermitian matrix. The simulation results show that the proposed algorithm achieves higher estimation accuracy and resolution than other algorithms on both array structures; i.e., the arbitrary array and the symmetric array.

Keywords: array; estimation; matrix; linear array; uniform linear; hermitian matrix

Journal Title: Energies
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.