With the increase of information processing speed, more and more engine optimization work can be processed automatically. The quick-response closed-loop control method is becoming an urgent demand for the combustion… Click to show full abstract
With the increase of information processing speed, more and more engine optimization work can be processed automatically. The quick-response closed-loop control method is becoming an urgent demand for the combustion control of modern internal combustion engines. In this paper, artificial neural network (ANN) and polynomial functions are used to predict the emission and engine performance based on seven parameters extracted from the in-cylinder pressure trace information of over 3000 cases. Based on the prediction model, the optimal combustion parameters are found with two different intelligent algorithms, including genetical algorithm and fish swarm algorithm. The results show that combination of quadratic function with genetical algorithm is able to obtain the appropriate combustion control parameters. Both engine emissions and thermal efficiency can be virtually predicted in a much faster way, such that enables a promising way to achieve fast and reliable closed-loop combustion control.
               
Click one of the above tabs to view related content.