Nowadays, most metro vehicles are equipped with an automatic train operation (ATO) system, and the speed control method, combining cruise speed planning and proportional-integral-derivative (PID) control, is widely used. The… Click to show full abstract
Nowadays, most metro vehicles are equipped with an automatic train operation (ATO) system, and the speed control method, combining cruise speed planning and proportional-integral-derivative (PID) control, is widely used. The automation is achieved, and the energy-efficient can be improved. This paper presents an improved artificial bee colony algorithm for speed profile optimization with coast mode and an adaptive terminal sliding mode method for speed tracking. Specifically, a multi-objective optimization model is established, which considers energy consumption, comfortableness, and punctuality. Then, a novel artificial bee colony algorithm named regional reinforcement artificial bee colony (RR-ABC) is designed, to search the optimal speed profile with coast mode, in which some improvements are made to speed up convergence and to avoid local optimal solutions. For speed-tracking control, the adaptive terminal sliding mode controller (ATSMC) is used to improve the speed error, robustness, and energy saving. In addition, a disturbance observer (DOB) is designed to improve the anti-interference ability of the system and further improve the robustness and anti-disturbance, which are also conducive to speed error and energy saving. Finally, the line and train data of the Qingdao Metro Line 6 are used for simulation, which proves the effectiveness of the study. Specific to the energy saving rate, and compared with normal algorithms, RR-ABC with coast mode is approximately 9.55%, and ATSMC+DOB is 7.58%.
               
Click one of the above tabs to view related content.