LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Real-Time Multiparameter Identification of a Salient-Pole PMSM Based on Two Steady States

Photo by jontyson from unsplash

Real-time multiparameter identification has been widely investigated in relation to high-performance control and fault diagnosis of salient-pole permanent magnet synchronous motors (PMSMs). However, it is rank-deficient for simultaneously estimating flux,… Click to show full abstract

Real-time multiparameter identification has been widely investigated in relation to high-performance control and fault diagnosis of salient-pole permanent magnet synchronous motors (PMSMs). However, it is rank-deficient for simultaneously estimating flux, resistance, and dq-axis inductances based on one steady state under maximum torque per ampere (MTPA) control, which will cause the ill-convergence problem in the results. This paper proposes a new method to solve the rank deficiency problem in the multiparameter identification of salient-pole PMSMs in systems where the motor working conditions do not change frequently. For this type of system, a second steady state is constructed in order to meet the full-rank conditions for multiparameter identification and minimize the torque ripple. Furthermore, in order to reduce the influence of inductance variations, a better shift direction from the first steady state to the second is ensured based on the analysis of the theoretical error. Simulation and experimental results show that the proposed method demonstrates good identification performance.

Keywords: real time; salient pole; multiparameter identification; identification; time multiparameter

Journal Title: Energies
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.