LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Quantitative Analysis of Amorphous Silica and Its Influence on Reservoir Properties: A Case Study on the Shale Strata of the Lucaogou Formation in the Jimsar Depression, Junggar Basin, China

Photo from wikipedia

To establish a new quantitative analysis method for amorphous silica content and understand its effect on reservoir properties, the amorphous silica (SiO2) in the shale strata of the Lucaogou Formation… Click to show full abstract

To establish a new quantitative analysis method for amorphous silica content and understand its effect on reservoir properties, the amorphous silica (SiO2) in the shale strata of the Lucaogou Formation in the Jimsar Depression was studied by scanning electron microscopy (SEM) observation, X-ray diffraction (XRD), and X-ray fluorescence spectrometry (XRF). Amorphous silica shows no specific morphology, sometimes exhibits the spherical or ellipsoid shapes, and usually disorderly mounds among other mineral grains. A new quantitative analysis method for observing amorphous SiO2 was established by combining XRD and XRF. On this basis, while the higher content of amorphous SiO2 lowers the porosity of the reservoir, the permeability shows no obvious changes. The higher the content of amorphous SiO2, the lower the compressive strength and Young’s modulus and the lower the oil saturation. Thus, amorphous SiO2 can reduce the physical properties of reservoir rocks and increase the reservoir plasticity, which is not only conducive to the enrichment of shale oil but also increases the difficulty of fracturing in later reservoir development.

Keywords: reservoir; shale strata; quantitative analysis; reservoir properties; amorphous silica

Journal Title: Energies
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.