LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Prediction and Validation of the Annual Energy Production of a Wind Turbine Using WindSim and a Dynamic Wind Turbine Model

Photo from wikipedia

In this study, dynamic simulations of a wind turbine were performed to predict its dynamic performance, and the results were experimentally validated. The dynamic simulation received time-domain wind speed and… Click to show full abstract

In this study, dynamic simulations of a wind turbine were performed to predict its dynamic performance, and the results were experimentally validated. The dynamic simulation received time-domain wind speed and direction data and predicted the power output by applying control algorithms. The target wind turbine for the simulation was a 2 MW wind turbine installed in an onshore wind farm. The wind speed and direction data for the simulation were obtained from WindSim, which is a commercial computational fluid dynamics (CFD) code for wind farm design, and measured wind speed and direction data with a mast were used for WindSim. For the simulation, the wind turbine controller was tuned to match the power curve of the target wind turbine. The dynamic simulation was performed for a period of one year, and the results were compared with the results from WindSim and the measurement. It was found from the comparison that the annual energy production (AEP) of a wind turbine can be accurately predicted using a dynamic wind turbine model with a controller that takes into account both power regulations and yaw actions with wind speed and direction data obtained from WindSim.

Keywords: wind; speed direction; wind speed; simulation; wind turbine

Journal Title: Energies
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.