LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Downward Annular Flow of Air–Oil–Water Mixture in a Vertical Pipe

Photo from wikipedia

The paper presents the results of a study concerned with the hydrodynamics of an annular downward multiphase flow of gas and two mutually non-mixing liquids through a vertical pipe with… Click to show full abstract

The paper presents the results of a study concerned with the hydrodynamics of an annular downward multiphase flow of gas and two mutually non-mixing liquids through a vertical pipe with a diameter of 12.5 mm. The air, oil and water were used as working media in this study with changes in superficial velocities in the ranges of jg = 0.34–52.5 m/s for air, jo = 0.000165–0.75 m/s for oil, and jw = 0.02–2.5 m/s for water, respectively. The oil density and viscosity were varied within the ranges of ρo = 859–881 kg/m3 and ηo = 29–2190 mPas, respectively. The research involved the identification of multiphase flow patterns and determination of the void fraction of the individual phases. New flow patterns have been identified and described for the gravitational flow conditions of a two-phase water–oil liquid and a three-phase air–water–oil flow. New flow regime maps and equations for the calculation of air, oil and water void fractions have been developed. A good conformity between the calculated and measured values of void fraction were obtained. The map for the oil–water–air three-phase flow is valid for the following conditions: j3P = 0.35–53.4 m/s (velocity of three-phase mixture) and oil in liquid concentration βo* = 0.48–94% (oil in liquid concentration). In the case of a downward annular oil–water two-phase flow, this map is valid for liquid mixture velocity jl = 0.052–2.14 m/s and βo* = 0.48–94%.

Keywords: oil water; water; air oil; oil; flow

Journal Title: Energies
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.