LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

An Optimized PV Control System Based on the Emperor Penguin Optimizer

Photo from wikipedia

During the day, photovoltaic (PV) systems are exposed to different sunlight conditions in addition to partial shading (PS). Accordingly, maximum power point tracking (MPPT) techniques have become essential for PV… Click to show full abstract

During the day, photovoltaic (PV) systems are exposed to different sunlight conditions in addition to partial shading (PS). Accordingly, maximum power point tracking (MPPT) techniques have become essential for PV systems to secure harvesting the maximum possible power from the PV modules. In this paper, optimized control is performed through the application of relatively newly developed optimization algorithms to PV systems under Partial Shading (PS) conditions. The initial value of the duty cycle of the boost converter is optimized for maximizing the amount of power extracted from the PV arrays. The emperor penguin optimizer (EPO) is proposed not only to optimize the initial setting of duty cycle but to tune the gains of controllers used for the boost converter and the grid-connected inverter of the PV system. In addition, the performance of the proposed system based on the EPO algorithm is compared with another newly developed optimization technique based on the cuttlefish algorithm (CFA). Moreover, particle swarm optimization (PSO) algorithm is used as a reference algorithm to compare results with both EPO and CFA. PSO is chosen since it is an old, well-tested, and effective algorithm. For the evaluation of performance of the proposed PV system using the proposed algorithms under different PS conditions, results are recorded and introduced.

Keywords: emperor penguin; system; penguin optimizer; system based; optimized control

Journal Title: Energies
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.