This paper proposes a multi-objective load dispatch algorithm based on economic predictive control to solve the real-time multi-objective load dispatch problem of biomass heat and power cogeneration. According to the… Click to show full abstract
This paper proposes a multi-objective load dispatch algorithm based on economic predictive control to solve the real-time multi-objective load dispatch problem of biomass heat and power cogeneration. According to the energy conservation law and production process, a real-time multi-objective load dispatch optimization model for heat and power units is established. Then, the concept of multi-objective utopia points is introduced, and the multi-objective load comprehensive objective function is defined to coordinate the conflict between the economic performance and pollutant emission performance of the units. Furthermore, using the online receding optimization characteristics of economic predictive control, the comprehensive objective function of multi-objective load dispatching is optimized online. Then, the fuel rate satisfying the economic performance and pollutant emission performance of the units is calculated to realize the economic performance and environmental protection operation of biomass heat and power cogeneration. Finally, the proposed multi-objective load dispatch control method is compared to traditional dispatch strategies by using industrial data. The results show that the method presented here can well balance the production cost and pollutant emission objective under the fluctuation of the thermoelectric load demand, and provides a feasible scheme for real-time dispatching of the multi-objective load dispatch problem of biomass heat and power cogeneration.
               
Click one of the above tabs to view related content.