The recent decade’s rapid unconventional oil and gas development in the Eagle Ford of south-central Texas has caused increased hydrocarbon emissions, which we have previously analyzed using data from a… Click to show full abstract
The recent decade’s rapid unconventional oil and gas development in the Eagle Ford of south-central Texas has caused increased hydrocarbon emissions, which we have previously analyzed using data from a Texas Commission on Environmental Quality air quality monitoring station located downwind of the shale area. Here, we expand our previous top-down emissions estimate and compare it to an estimated regional emissions maximum based on (i) individual facility permits for volatile organic compound (VOC) emissions, (ii) reported point source emissions of VOCs, (iii) traffic-related emissions, and (iv) upset emissions. This largely permit-based emissions estimate accounted, on average, for 86% of the median calculated emissions of C3-C6-hydrocarbons at the monitor. Since the measurement-based emissions encompass a smaller section of the shale than the calculated maximum permitted emissions, this strongly suggests that the actual emissions from oil and gas operations in this part of the Eagle Ford exceeded their permitted allowance. Possible explanations for the discrepancy include emissions from abandoned wells and high volumes of venting versus flaring. Using other recent observations, such as large fractions of unlit flares in the Permian shale basin, we suggest that the excessive venting of raw gas is a likely explanation. States such as Texas with significant oil gas production will need to require better accounting of emissions if they are to move towards a more sustainable energy economy.
               
Click one of the above tabs to view related content.