High-Voltage Direct Current (HVDC) systems are a feasible solution that allows the transmission of energy between several power networks. As a consequence of the use of HVDC systems, renewable energy… Click to show full abstract
High-Voltage Direct Current (HVDC) systems are a feasible solution that allows the transmission of energy between several power networks. As a consequence of the use of HVDC systems, renewable energy sources can be integrated more easily into distribution grids and smart grids. Furthermore, HVDC systems can contribute to improving the power quality (PQ) of the grids to which they are connected. This paper presents a multiterminal HVDC system that not only controls the flows of active power between four different networks, but also compensates imbalances and harmonics in the grid currents to maintain balanced and sinusoidal voltages at the point of common coupling of the various grids. The compensation is carried out by the voltage-source converters (VSCs) connected to their respective AC grids. A control scheme based on the use of resonant regulators and proportional–integral (PI) controllers is responsible for of achieving the necessary power flow control with the amelioration of the PQ. A case study of a multiterminal HVDC system that comprises four terminals sharing a DC bus of 80 kV is simulated by means of PSCADTM/EMTDCTM (Power System Computer-Aided Design; Electromagnetic Transients including Direct Current), where the AC grids associated with the terminals suffer from voltage imbalances and voltage harmonics owing to the connection of unbalanced loads and nonlinear loads. The obtained simulation results show the performance of the complete system in terms of active power flow, voltage regulation, and harmonic distortions of the grid current and the grid voltage.
               
Click one of the above tabs to view related content.