LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

An Intelligent Task Scheduling Mechanism for Autonomous Vehicles via Deep Learning

Photo by williamk from unsplash

With the rapid development of the Internet of Things (IoT) and artificial intelligence, autonomous vehicles have received much attention in recent years. Safe driving is one of the essential concerns… Click to show full abstract

With the rapid development of the Internet of Things (IoT) and artificial intelligence, autonomous vehicles have received much attention in recent years. Safe driving is one of the essential concerns of self-driving cars. The main problem in providing better safe driving requires an efficient inference system for real-time task management and autonomous control. Due to limited battery life and computing power, reducing execution time and resource consumption can be a daunting process. This paper addressed these challenges and developed an intelligent task management system for IoT-based autonomous vehicles. For each task processing, a supervised resource predictor is invoked for optimal hardware cluster selection. Tasks are executed based on the earliest hyper period first (EHF) scheduler to achieve optimal task error rate and schedule length performance. The single-layer feedforward neural network (SLFN) and lightweight learning approaches are designed to distribute each task to the appropriate processor based on their emergency and CPU utilization. We developed this intelligent task management module in python and experimentally tested it on multicore SoCs (Odroid Xu4 and NVIDIA Jetson embedded platforms). Connected Autonomous Vehicles (CAV) and Internet of Medical Things (IoMT) benchmarks are used for training and testing purposes. The proposed modules are validated by observing the task miss rate, resource utilization, and energy consumption metrics compared with state-of-art heuristics. SLFN-EHF task scheduler achieved better results in an average of 98% accuracy, and in an average of 20–27% reduced in execution time and 32–45% in task miss rate metric than conventional methods.

Keywords: intelligent task; task; autonomous vehicles; scheduling mechanism; task management; task scheduling

Journal Title: Energies
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.