LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Achieving High-Performance Spherical Natural Graphite Anode through a Modified Carbon Coating for Lithium-Ion Batteries

Photo by jordanmcdonald from unsplash

The electrochemical performance of modified natural graphite (MNG) and artificial graphite (AG) was investigated as a function of electrode density ranging from 1.55 to 1.7 g∙cm−3. The best performance was… Click to show full abstract

The electrochemical performance of modified natural graphite (MNG) and artificial graphite (AG) was investigated as a function of electrode density ranging from 1.55 to 1.7 g∙cm−3. The best performance was obtained at 1.55 g∙cm−3 and 1.60 g∙cm−3 for the AG and MNG electrodes, respectively. Both AG, at a density of 1.55 g∙cm−3, and MNG, at a density of 1.60 g∙cm−3, showed quite similar performance with regard to cycling stability and coulombic efficiency during cycling at 30 and 45 °C, while the MNG electrodes at a density of 1.60 g∙cm−3 and 1.7 g∙cm−3 showed better rate performance than the AG electrodes at a density of 1.55 g∙cm−3. The superior rate capability of MNG electrodes can be explained by the following effects: first, their spherical morphology and higher electrode density led to enhanced electrical conductivity. Second, for the MNG sample, favorable electrode tortuosity was retained and thus Li+ transport in the electrode pore was not significantly affected, even at high electrode densities of 1.60 g∙cm−3 and 1.7 g∙cm−3. MNG electrodes also exhibited a similar electrochemical swelling behavior to the AG electrodes.

Keywords: performance; density; mng electrodes; graphite; natural graphite

Journal Title: Energies
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.