LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Current-Based Bearing Fault Diagnosis Using Deep Learning Algorithms

Photo from wikipedia

Artificial intelligence algorithms and vibration signature monitoring are recurrent approaches to perform early bearing damage identification in induction motors. This approach is unfeasible in most industrial applications because these machines… Click to show full abstract

Artificial intelligence algorithms and vibration signature monitoring are recurrent approaches to perform early bearing damage identification in induction motors. This approach is unfeasible in most industrial applications because these machines are unable to perform their nominal functions under damaged conditions. In addition, many machines are installed at inaccessible sites or their housing prevents the setting of new sensors. Otherwise, current signature monitoring is available in most industrial machines because the devices that control, supply and protect these systems use the stator current. Another significant advantage is that the stator phases lose symmetry in bearing damaged conditions and, therefore, are multiple independent sources. Thus, this paper introduces a new approach based on fractional wavelet denoising and a deep learning algorithm to perform a bearing damage diagnosis from stator currents. Several convolutional neural networks extract features from multiple sources to perform supervised learning. An information fusion (IF) algorithm then creates a new feature set and performs the classification. Furthermore, this paper introduces a new method to achieve positive unlabeled learning. The flattened layer of several feature maps inputs the fuzzy c-means algorithm to perform a novelty detection instead of clusterization in a dynamic IF context. Experimental and on-site tests are reported with promising results.

Keywords: based bearing; diagnosis; current based; learning; bearing; deep learning

Journal Title: Energies
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.