LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Development of a Permeability Formula for Tight and Shale Gas Reservoirs Based on Advanced High-Precision Lab Measurement Techniques

Photo from wikipedia

Computed X-ray tomography (CT), together with pulse and pressure decay permeability methods were used to evaluate a formula for absolute reservoir permeability. For this reason, 62 core samples representing geological… Click to show full abstract

Computed X-ray tomography (CT), together with pulse and pressure decay permeability methods were used to evaluate a formula for absolute reservoir permeability. For this reason, 62 core samples representing geological material of tight, gas-bearing sandstones, mudstones, limestones, and dolostones were studied. Samples were divided into two groups with lower and higher permeability values. Images of the pore space were processed and interpreted to obtain geometrical parameters of the objects (pores, microfractures) with 0.5 × 0.5 × 0.5 µm3 voxel size. Statistical methods, which included basic statistical analysis, linear regression, and multiple linear regression analysis, were combined to evaluate the formula for absolute permeability. It appeared that the following parameters: Feret Breadth/Volume, Flatness/Anisotropy, Feret Max/Flatness, moments of inertia around middle principal axis I2/around longest principal axis I3, Anisotropy/Flatness, Flatness/Anisotropy provided the best results. The presented formula was obtained for a large set of data and is based only on the geometric parameters of the pore space. The novelty of the work is connected with the estimation of absolute permeability using only data from the CT method for tight rocks.

Keywords: gas; development permeability; permeability formula; permeability; flatness; formula

Journal Title: Energies
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.