This paper analyzes how over-coupled coils affect odd harmonic current and electromagnetic interference (EMI) in a wireless power transfer (WPT) system, and proposes design considerations for series inductors to solve… Click to show full abstract
This paper analyzes how over-coupled coils affect odd harmonic current and electromagnetic interference (EMI) in a wireless power transfer (WPT) system, and proposes design considerations for series inductors to solve the EMI problem. When the air gap of the coils of the WPT system decreases below a certain level and the coils are over-coupled, the odd harmonic component of the input impedance of the system decreases and odd harmonic currents increase. The increase in the odd harmonic components current quickly aggravates the EMI issues. To solve the EMI problem of the over-coupled WPT system, additional series inductors were applied to the system, and considerations for designing the series inductors were analyzed. When designing additional series inductors, power transfer efficiency, maximum power transfer, input impedance and odd harmonic components current must be considered. Using simulations and experiments, it was confirmed that the WPT system designed with analyzed considerations maintained relatively high efficiency and reduced EMI issues.
               
Click one of the above tabs to view related content.