LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Lightning Impulse Overvoltage Propagation in HVDC Meshed Grid

Photo by aliidu from unsplash

This paper reports on the propagation of lightning overvoltage in a high-voltage direct current (HVDC) meshed grid. Since several topologies of meshed grids have been elaborated in the last decade,… Click to show full abstract

This paper reports on the propagation of lightning overvoltage in a high-voltage direct current (HVDC) meshed grid. Since several topologies of meshed grids have been elaborated in the last decade, we used a common comprehensive reference test platform. The lightning impulse propagation was investigated with regard to the impact of surge arresters and the polarity of the lightning stroke concerning the DC line polarity (±500 kV). Various scenarios were considered, including a direct lightning strike to the DC+ conductor, to the tower, and to the shielding wire in the middle of the span, including backflash on the insulators. The influence of tower footing impedance on overvoltage levels at various nodes was assessed, depicting the critical value. A description of the models used in the simulations was provided. The main focus of the paper was on the wide-area propagation of the overvoltages in the meshed grid, at distant terminals and inside the feeders. An interesting observation was the effects of lightning at the far end of the analyzed grid, propagating through multiterminal and long-distance connections. The presented analysis, based on an exemplary meshed HVDC grid, underlines the importance of the insulation coordination studies and system security studies with respect to the localization of overvoltage protection systems.

Keywords: propagation; hvdc meshed; overvoltage; lightning impulse; meshed grid

Journal Title: Energies
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.