LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Modeling of Small Productive Processes for the Operation of a Microgrid

Photo by gabiontheroad from unsplash

Small productive processes (SPPs) are promising drivers that promote the economic use of energy in microgrids (MGs). Both the complex nature of the SPPs and voltage variations make the operation… Click to show full abstract

Small productive processes (SPPs) are promising drivers that promote the economic use of energy in microgrids (MGs). Both the complex nature of the SPPs and voltage variations make the operation of MGs challenging, since the quality of an energy management system’s (EMS) decisions depend on its characterization. The aim of this work is to propose a methodology for SPPs modeling, and to consider the influence of voltage on load consumption, which has general validity, and can be efficiently integrated into different MG EMS approaches. For this purpose, a novel extended multi-zone ZIP approach for the characterization of SPP loads and sensitivity to voltage changes is proposed. The associated framework herein presented was assessed using actual data collected from SPPs installed near the city of Arica, in northern Chile. The results showed that the proposed methodology was capable of representing the complex load behavior of the SPPs, properly considering the voltage influence. These results were compared with those obtained through common approaches found in the literature. The effectiveness of the proposed approach in representing SPP loads and their sensitivity to voltage changes was verified. The proposed scheme can be efficiently integrated into a wide range of EMS for MGs that include SPPs.

Keywords: methodology; modeling small; voltage; small productive; productive processes; operation

Journal Title: Energies
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.