LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

On the Physical Nature of Frequency Control Problems of Induction Motor Drives

Photo from wikipedia

This article considers the possibility of connecting the problems of the engineering synthesis of frequency control systems for induction motor drives (IMD) with the theory of the identification of IMD… Click to show full abstract

This article considers the possibility of connecting the problems of the engineering synthesis of frequency control systems for induction motor drives (IMD) with the theory of the identification of IMD based on the equations of a generalized AC electric machine. The article presents experimental studies of load parrying in IMD with vector (VC) and scalar (SC) controls. These results indicate the absence of fundamental advantages in a drive with VC. This advantage should manifest in a more efficient formation of the moment and fast transients. A method was proposed for describing IMD by nonlinear transfer functions, making it possible to formulate the principle of the correction of IMD and a method for assessing their efficiency. The article shows that the correction based on the proposed nonlinear transfer functions of the induction motor is much more efficient than the traditional VC, which was confirmed by detailed experiments and modeling. The most important results are given in the article. An assumption was made that the efficiency advantage was due to more accurate identification of the dynamics of an IMD with a gear function instead of vector equations.

Keywords: induction motor; motor; motor drives; article; frequency control

Journal Title: Energies
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.