LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Numerical Study of Thermal-Hydraulic Performance of a New Spiral Z-Type PCHE for Supercritical CO2 Brayton Cycle

Photo from wikipedia

Printed circuit heat exchangers (PCHEs) have the characteristics of high temperature and high pressure resistance, as well as compact structure, so they are widely used in the supercritical carbon dioxide… Click to show full abstract

Printed circuit heat exchangers (PCHEs) have the characteristics of high temperature and high pressure resistance, as well as compact structure, so they are widely used in the supercritical carbon dioxide (S-CO2) Brayton cycle. In order to fully study the heat transfer process of the Z-type PCHE, a numerical model of traditional Z-type PCHE was established and the accuracy of the model was verified. On this basis, a new type of spiral PCHE (S-ZPCHE) is proposed in this paper. The segmental design method was used to compare the pressure changes under 5 different spiral angles, and it was found that increasing the spiral angle θ of the spiral structure will reduce the pressure drop of the fluid. The effects of different spiral angles on the thermal-hydraulic performance of S-ZPCHE were compared. The results show that the pressure loss of fluid is greatly reduced, while the heat transfer performance is slightly reduced, and it was concluded that the spiral angle of 20° is optimal. The local fluid flow states of the original structure and the optimal structure were compared to analyze the reason for the pressure drop reduction effect of the optimal structure. Finally, the performance of the optimal structure was analyzed under variable working conditions. The results show that the effect of reducing pressure loss of the new S-ZPCHE is more obvious in the low Reynolds number region.

Keywords: performance; type pche; structure; pressure; pche

Journal Title: Energies
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.