Several families in India live in remote places with no access to grid-connected power supply due to their remoteness. The study area chosen from the Indian state of Odisha does… Click to show full abstract
Several families in India live in remote places with no access to grid-connected power supply due to their remoteness. The study area chosen from the Indian state of Odisha does not have an electrical power supply due to its distant location. As a result, this study analyzed the electrification process using Renewable Energy (RE) resources available in the locality. However, these RE resources are limited by their dependency on weather conditions and time. So, a robust battery storage system is needed for a continuous power supply. Hence, the Nickel Iron (Ni-Fe), Lithium-Ion (Li-Ion) and Lead Acid (LA) battery technologies have been analyzed to identify a battery technology that is both technologically and economically viable. Using the available RE resources in the study area, such as photovoltaic and biomass energy resources, as well as the various battery technologies, three configurations have been modelled, such as Photovoltaic Panels (PVP)/Biomass Generator(BIOMG)/BATTERY(Ni-Fe), PV/BIOMG/BATTERY(Li-Ion) and PVP/BMG/BATTERY(LA). These three configurations have been examined using nine prominent metaheuristic algorithms, in which the PVP/BIOMG/BATTERY(Ni-Fe) configuration provided the optimal Life Cycle Cost value of 367,586 USD. Among the all metaheuristic algorithms, the dynamic differential annealed optimization algorithm was given the best Life Cycle Cost values for all of the three configurations.
               
Click one of the above tabs to view related content.