This paper investigates the control-oriented modeling for turbofan engines. The nonlinear equilibrium manifold expansion (EME) model of the multiple input multiple output (MIMO) turbofan engine is established, which can simulate… Click to show full abstract
This paper investigates the control-oriented modeling for turbofan engines. The nonlinear equilibrium manifold expansion (EME) model of the multiple input multiple output (MIMO) turbofan engine is established, which can simulate the variation of high-pressure rotor speed, low-pressure rotor speed and pressure ratio of compressor with fuel flow and throat area of the nozzle. Firstly, the definitions and properties of the equilibrium manifold method are presented. Secondly, the steady-state and dynamic two-step identification method of the MIMO EME model is given, and the effects of scheduling variables and input noise on model accuracy are discussed. By selecting specific path, a small amount of dynamic data is used to identify a complete EME model. Thirdly, modeling and simulation at dynamic off-design conditions show that the EME model has model accuracy close to the nonlinear component-level (NCL) model, but the model structure is simpler and the calculation is faster than that. Finally, the linearization results are obtained based on the properties of the EME model, and the stability of the model is proved through the analysis of the eigenvalues, which all have negative real parts. The EME model constructed in this paper can meet the requirements of real-time simulation and control system design.
               
Click one of the above tabs to view related content.