The integration of wind energy into power systems has intensified as a result of the urgency for global energy transition. This requires more accurate forecasting techniques that can capture the… Click to show full abstract
The integration of wind energy into power systems has intensified as a result of the urgency for global energy transition. This requires more accurate forecasting techniques that can capture the variability of the wind resource to achieve better operative performance of power systems. This paper presents an exhaustive review of the state-of-the-art of wind-speed and -power forecasting models for wind turbines located in different segments of power systems, i.e., in large wind farms, distributed generation, microgrids, and micro-wind turbines installed in residences and buildings. This review covers forecasting models based on statistical and physical, artificial intelligence, and hybrid methods, with deterministic or probabilistic approaches. The literature review is carried out through a bibliometric analysis using VOSviewer and Pajek software. A discussion of the results is carried out, taking as the main approach the forecast time horizon of the models to identify their applications. The trends indicate a predominance of hybrid forecast models for the analysis of power systems, especially for those with high penetration of wind power. Finally, it is determined that most of the papers analyzed belong to the very short-term horizon, which indicates that the interest of researchers is in this time horizon.
               
Click one of the above tabs to view related content.