LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Simple and Robust MPPT Current Control of a Wound Rotor Synchronous Wind Generator

Photo from wikipedia

In the search for efficient non-permanent magnet variable-speed wind generator solutions, this paper proposes a maximum power point tracking (MPPT) current-control method for a wound rotor synchronous wind generator. The… Click to show full abstract

In the search for efficient non-permanent magnet variable-speed wind generator solutions, this paper proposes a maximum power point tracking (MPPT) current-control method for a wound rotor synchronous wind generator. The focus is on direct-drive, medium-speed wind generators. In the proposed method, the currents of the wound rotor synchronous generator (WRSG) are optimally adjusted according to the generator speed to ensure maximum power generation from the wind turbine without needing information on wind speed. The design, modeling, and simulation of the MPPT current controllers are done in Matlab/Simulink with the WRSG in the synchronous reference frame. The controller is put to the test using different wind speed profiles between cut-in and rated speeds. The simulation results indicate that the proposed current control method is simple, effective, and robust, suggesting its practical implementation. To validate the simulation results, experimental work on a 4.2 kW WRSG prototype system is presented to demonstrate the stability and robustness of the MPPT current control method in operating the turbine at or near the maximum power point.

Keywords: wind generator; generator; mppt current; current control

Journal Title: Energies
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.