LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Comprehensive Review of GaN-Based Bi-Directional On-Board Charger Topologies and Modulation Methods

Photo from wikipedia

The wide-scale adoption and accelerated growth of electric vehicle (EV) use and increasing demand for faster charging necessitate the research and development of power electronic converters to achieve high-power, compact,… Click to show full abstract

The wide-scale adoption and accelerated growth of electric vehicle (EV) use and increasing demand for faster charging necessitate the research and development of power electronic converters to achieve high-power, compact, and reliable EV charging solutions. Although the fast charging concept is often associated with off-board DC chargers, the importance of on-board AC fast charging is undeniable with the increasing battery capacities. This article comprehensively reviews gallium nitride (GaN) semiconductor-based bidirectional on-board charger (OBC) topologies used in both 400 V and 800 V EV applications. Moreover, comparative evaluations of GaN-based bi-directional OBC topologies regarding power conversion losses (conduction loss and soft switching capabilities), power density, implementation considerations, power quality, electromagnetic interference, and reliability aspects have been presented. The status of commercially available GaN power modules, advancements in GaN technology, applicable industry standards, and application requirements for OBCs have been also included in this study. Finally, in light of forthcoming advancements in GaN power transistor technology, this study highlights potential areas of research related to the reviewed topologies. Such research can aid researchers and designers in improving the performance and user experience of electric vehicles, ultimately supporting the widespread adoption of EVs.

Keywords: gan based; power; based directional; board; board charger

Journal Title: Energies
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.