More than 25% of the total energy consumption in Finland has been produced with wood fuels. Since 2012, the share has been greater than that of oil, coal, or natural… Click to show full abstract
More than 25% of the total energy consumption in Finland has been produced with wood fuels. Since 2012, the share has been greater than that of oil, coal, or natural gas. Internal carbon pricing is used to manage the risks in wood procurement after wood import from Russia ended. Further, the EU announced plans to sell more carbon emission permits to fund the EU’s exit from Russian energy. To manage these challenges, a data-driven internal carbon pricing mechanism (DDICPM) has been developed for wood procurement optimization. Particularly, local changes are considered via available information about growth-based carbon sinks (GBCS). The results of the new scenario were compared to the basic national scenario that ensures carbon neutrality in forestry. The DDICPM may provide the optimum wood-procurement operations maintaining carbon neutrality in the integrated energy and material industry (IEMI). In this study, the use of DDICPM increased profitability b 16.2, 16.1, and 16.0% between adapted wood procurement areas at the EU’s emission allowance prices of 30, 65, and 98 € t−1 CO2. The experiments’ results also revealed that the DDICPM could consistently and significantly outperform the conventional solution adopted by the company in terms of economic costs. A significant conclusion is that an increase in profitability is possible if the size of wood procurement areas is allowed to vary optimally with respect to transport distance to take advantage of the GBCS as a new application of the renewable carbon sink.
               
Click one of the above tabs to view related content.