LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Review on Flame Stabilization Technologies for UAV Engine Micro-Meso Scale Combustors: Progress and Challenges

Photo from wikipedia

Unmanned aerial vehicles (UAV)s have unique requirements that demand engines with high power-to-weight ratios, fuel efficiency, and reliability. As such, combustion engines used in UAVs are specialized to meet these… Click to show full abstract

Unmanned aerial vehicles (UAV)s have unique requirements that demand engines with high power-to-weight ratios, fuel efficiency, and reliability. As such, combustion engines used in UAVs are specialized to meet these requirements. There are several types of combustion engines used in UAVs, including reciprocating engines, turbine engines, and Wankel engines. Recent advancements in engine design, such as the use of ceramic materials and microscale combustion, have the potential to enhance engine performance and durability. This article explores the potential use of combustion-based engines, particularly microjet engines, as an alternative to electrically powered unmanned aerial vehicle (UAV) systems. It provides a review of recent developments in UAV engines and micro combustors, as well as studies on flame stabilization techniques aimed at enhancing engine performance. Heat recirculation methods have been proposed to minimize heat loss to the combustor walls. It has been demonstrated that employing both bluff-body stabilization and heat recirculation methods in narrow channels can significantly improve combustion efficiency. The combination of flame stabilization and heat recirculation methods has been observed to significantly improve the performance of micro and mesoscale combustors. As a result, these technologies hold great promise for enhancing the performance of UAV engines.

Keywords: flame stabilization; stabilization; combustion; micro; engine; performance

Journal Title: Energies
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.