LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Application of TiO2/Ag/TiO2 as an Ohmic Contact to an AlGaAs Layer in a GaAs Solar Cell

Photo by john_cameron from unsplash

This paper investigates the possibility of using a nanolaminate TiO2/Ag/TiO2 structure as a transparent conductive coating on GaAs solar cells. A novel result is that this structure forms an Ohmic… Click to show full abstract

This paper investigates the possibility of using a nanolaminate TiO2/Ag/TiO2 structure as a transparent conductive coating on GaAs solar cells. A novel result is that this structure forms an Ohmic contact to Al-rich AlGaAs, which is used as a “window” layer in GaAs-based solar cells. The TiO2/Ag/TiO2 structure is deposited by RF magnetron sputtering at room temperature. This nanolaminate coating has good optical and electrical properties: a high transmittance of 94% at 550 nm, a sheet resistance of 7 Ω/sq, and a figure of merit (FOM) of 105 × 10−3 Ω−1. These properties are the result of the presence of a discontinuous layer of Ag between two thin layers of TiO2. The morphology of a discontinuous layer of Ag nanogranules is confirmed by the observation of a cross-section of a sample with high-resolution transmission electron microscopy (HRTEM) and EDX analyses. Current–voltage diode characteristics of GaAs solar cells measured under standard test illumination at 1000 W/m2 are analyzed. The formation of an Ohmic contact is explained by the Fermi-level pinning effect caused by nanosized Ag particles in the nanolaminate TiO2/Ag/TiO2 structure. The obtained results demonstrate a new application of oxide−metal−oxide (OMO) coatings as Ohmic contacts to III-V compound semiconductors.

Keywords: tio2 tio2; gaas solar; layer; tio2; ohmic contact

Journal Title: Energies
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.