The existing model of magnetic suspension force for flywheel batteries mainly focuses on the internal magnetic field and foundation motions. However, when applied to vehicle-mounted occasions, the accuracy of the… Click to show full abstract
The existing model of magnetic suspension force for flywheel batteries mainly focuses on the internal magnetic field and foundation motions. However, when applied to vehicle-mounted occasions, the accuracy of the model will inevitably be affected by the vehicle vibration system and road conditions. Therefore, in view of the shortcomings of the existing research, a typical road condition (pulse road excitation) is taken as an example in this study to establish a model of magnetic suspension force that comprehensively considers automobile suspension and pulse road excitation. First, on the basis of a static model for magnetic suspension force using the equivalent magnetic circuit method, a magnetic suspension force dynamic model that takes into account the influence of automobile suspension and pulse road excitation is established. The rules of dynamic response under the influence of automobile suspension and pulse road excitation are summarized, and the foundation offset is corrected in the form of main migration points. Therefore, a correction model of magnetic suspension force is established. Finally, performance tests are carried out. The better anti-interference capability of the correction model is proven by the experimental results.
               
Click one of the above tabs to view related content.