LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Leaf Age Compared to Tree Age Plays a Dominant Role in Leaf δ13C and δ15N of Qinghai Spruce (Picea crassifolia Kom.)

Photo by philldane from unsplash

Leaf stable isotope compositions (δ13C and δ15N) are influenced by various abiotic and biotic factors. Qinghai spruce (Picea crassifolia Kom.) as one of the dominant tree species in Qilian Mountains… Click to show full abstract

Leaf stable isotope compositions (δ13C and δ15N) are influenced by various abiotic and biotic factors. Qinghai spruce (Picea crassifolia Kom.) as one of the dominant tree species in Qilian Mountains plays a key role in the ecological stability of arid region in the northwest of China. However, our knowledge of the relative importance of multiple factors on leaf δ13C and δ15N remains incomplete. In this work, we investigated the relationships of δ13C and δ15N to leaf age, tree age and leaf nutrients to examine the patterns and controls of leaf δ13C and δ15N variation of Picea crassifolia. Results showed that 13C and 15N of current-year leaves were more enriched than older ones at each tree age level. There was no significant difference in leaf δ13C values among trees of different ages, while juvenile trees (<50 years old) were 15N depleted compared to middle-aged trees (50–100 years old) at each leaf age level except for 1-year-old leaves. Meanwhile, relative importance analysis has demonstrated that leaf age was one of the most important indicators for leaf δ13C and δ15N. Moreover, leaf N concentrations played a dominant role in the variations of δ13C and δ15N. Above all, these results provide valuable information on the eco-physiological responses of P. crassifolia in arid and semi-arid regions.

Keywords: leaf 13c; leaf age; picea crassifolia; tree age; age; 13c 15n

Journal Title: Forests
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.