LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Impact of Particulate Matter (PM10 and PM2.5) from a Thermoelectric Power Plant on Morpho-Functional Traits of Rhizophora mangle L. Leaves

Photo by joshhild from unsplash

A conventional thermoelectric plant (TP) in the sandy bar of the Tampamachoco Lagoon (Gulf of Mexico slope) emits particulate matter (PM) transporting trace metals that affect a mangrove forest. Wind… Click to show full abstract

A conventional thermoelectric plant (TP) in the sandy bar of the Tampamachoco Lagoon (Gulf of Mexico slope) emits particulate matter (PM) transporting trace metals that affect a mangrove forest. Wind transports the emission plume from north to south in the northerly wind season (NWS); the dry season (DS) showed calm periods. We analyzed whether PM2.5 and PM10 emissions from the TP and their trace metals impact Rhizophora mangle leaves. The experimental design included three sampling sites along the main lagoon axis (north to south) during the NWS and DS. Mangrove leaves were collected; PM was obtained with a cascade impactor and trace elements were analyzed by atomic absorption spectrophotometry. Leaves were measured and tested for metal and chlorophyll content, and for metal detection with SEM-EDX. Calm periods in the DS promote high atmospheric PM concentrations. Wet deposition in the NWS caused the highest trace metal deposition on mangrove leaves. A north-to-south gradient was identified on the mangrove forest, being the south site of the lagoon where lower chlorophyll and leaf area, higher stomatal width and density, and higher Cd concentrations were recorded. The morpho-physiological modifications observed on mangrove leaves affect functions such as photosynthesis and gas exchange.

Keywords: pm2; particulate matter; rhizophora mangle; plant; mangle leaves

Journal Title: Forests
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.