LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Vertical Ozone Gradients above Forests. Comparison of Different Calculation Options with Direct Ozone Measurements above a Mature Forest and Consequences for Ozone Risk Assessment

Photo from wikipedia

The estimation of the ozone (O3) stomatal dose absorbed by a forest is a crucial step for O3 risk assessment. For this purpose, data on O3 concentrations at the forest… Click to show full abstract

The estimation of the ozone (O3) stomatal dose absorbed by a forest is a crucial step for O3 risk assessment. For this purpose, data on O3 concentrations at the forest top-canopy are needed. However, O3 is barely measured at that height, while more often it is measured at a lower height above a different surface, typically a grassland near to the forest edge. The DO3SE model for O3 stomatal flux calculation estimates the top-canopy O3 concentration in near neutral stability conditions. However, near-neutrality is quite rare in the field, particularly in southern Europe. In this work, we present a modification of the DO3SE gradient calculation scheme to include the atmospheric stability. The performance of the new calculation scheme was tested against the direct measurements above a mature forest. Different gradient estimation options were also tested and evaluated. These options include simplified gradient calculation schemes and the techniques of the tabulated gradients described in the UN/ECE Mapping Manual for O3 risk assessment. The results highlight that the inclusion of the atmospheric stability in the DO3SE model greatly improves the accuracy of the stomatal dose estimation. However, the simpler technique of the tabulated gradients had the best performance on a whole-season time frame.

Keywords: mature forest; risk assessment; measurements mature; calculation; ozone

Journal Title: Forests
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.