LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Traffic-Induced Changes and Processes in Forest Road Aggregate Particle-Size Distributions

Photo from wikipedia

Traffic can alter forest road aggregate material in various ways, such as by crushing, mixing it with subgrade material, and sweeping large-size, loose particles (gravel) toward the outside of the… Click to show full abstract

Traffic can alter forest road aggregate material in various ways, such as by crushing, mixing it with subgrade material, and sweeping large-size, loose particles (gravel) toward the outside of the road. Understanding the changes and physical processes of the aggregate is essential to mitigate sediment production from forest roads and reduce road maintenance efforts. We compared the particle-size distributions of forest road aggregate from the Clearwater National Forest in Idaho, USA in three vertical layers (upper, middle, and bottom of the road aggregate), three horizontal locations (tire track, shoulder, and half-way between them), and three traffic uses (none, light (no logging vehicles), and heavy (logging vehicles and equipment)) using Tukey’s multiple comparison test. Light traffic appears to cause aggregate crushing where vehicle tires passed and caused sweeping on the road surface. Heavy traffic caused aggregate crushing at all vertical and horizontal locations, and subgrade mixing with the bottom layer at the shoulder location. Logging vehicles and heavy equipment with wide axles drove on the shoulder and exerted enough stress to cause subgrade mixing. These results can help identify the sediment source and define adequate mitigation measures to reduce sediment production from forest roads and reduce road maintenance efforts by providing information for best management practices.

Keywords: traffic; road; size; road aggregate; forest road

Journal Title: Forests
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.