LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Hierarchical Cache Size Allocation Scheme Based on Content Dissemination in Information-Centric Networks

Photo from wikipedia

With the rapid growth of mass content retrieval on the Internet, Information-Centric Network (ICN) has become one of the hotspots in the field of future network architectures. The in-network cache… Click to show full abstract

With the rapid growth of mass content retrieval on the Internet, Information-Centric Network (ICN) has become one of the hotspots in the field of future network architectures. The in-network cache is an important feature of ICN. For better network performance in ICN, the cache size on each node should be allocated in proportion to its importance. However, in some current studies, the importance of cache nodes is usually determined by their location in the network topology, ignoring their roles in the actual content transmission process. In this paper, we focus on the allocation of cache size for each node within a given total cache space budget. We explore the impact of heterogeneous cache allocation on content dissemination under the same ICN infrastructure and we quantify the importance of nodes from content dissemination and network topology. To this purpose, we implement a hierarchy partitioning method based on content dissemination, then we formulate a set of weight calculation methods for these hierarchies and to provide a per-node cache space allocation to allocate the total cache space budget to each node in the network. The performance of the scheme is evaluated on the Garr topology, and the average hit ratio, latency, and load are compared to show that the proposed scheme has better performance in these aspects than

Keywords: content dissemination; network; topology; cache; allocation

Journal Title: Future Internet
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.