LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Integrating Elliptic Curve Cryptography with the Modbus TCP SCADA Communication Protocol

Photo by nathananderson from unsplash

SCADA systems monitor critical industrial, energy and other physical infrastructures in order to detect malfunctions, issue alerts and, in many cases, propose or even take remedial actions. However, due to… Click to show full abstract

SCADA systems monitor critical industrial, energy and other physical infrastructures in order to detect malfunctions, issue alerts and, in many cases, propose or even take remedial actions. However, due to their attachment to the Internet, SCADA systems are, today, vulnerable to attacks such as, among several others, interception of data traffic, malicious modifications of settings and control operations data, malicious modification of measurements and infrastructure data and Denial-of-Service attacks. Our research focuses on strengthening SCADA systems with cryptographic methods and protection mechanisms with emphasis on data and messaging encryption and device identification and authentication. The limited availability of computing power and memory in sensors and embedded devices deployed in SCADA systems make render cryptographic methods with higher resource requirements, such as the use of conventional public key cryptography such as RSA, unsuitable. We, thus, propose Elliptic Curve Cryptography as an alternative cryptographic mechanism, where smaller key sizes are required, with lower resource requirements for cryptographic operations. Accordingly, our approach integrates Modbus, a commonly used SCADA communication protocol, with Elliptic Curve Cryptography. We have, also, developed an experimental set-up in order to demonstrate the performance of our approach and draw conclusions regarding its effectiveness in real SCADA installations.

Keywords: elliptic curve; curve cryptography; scada systems; scada communication; cryptography

Journal Title: Future Internet
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.