LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Analysis and Prediction of the IPv6 Traffic over Campus Networks in Shanghai

Photo by dnevozhai from unsplash

With the exhaustion of IPv4 addresses, research on the adoption, deployment, and prediction of IPv6 networks becomes more and more significant. This paper analyzes the IPv6 traffic of two campus… Click to show full abstract

With the exhaustion of IPv4 addresses, research on the adoption, deployment, and prediction of IPv6 networks becomes more and more significant. This paper analyzes the IPv6 traffic of two campus networks in Shanghai, China. We first conduct a series of analyses for the traffic patterns and uncover weekday/weekend patterns, the self-similarity phenomenon, and the correlation between IPv6 and IPv4 traffic. On weekends, traffic usage is smaller than on weekdays, but the distribution does not change much. We find that the self-similarity of IPv4 traffic is close to that of IPv6 traffic, and there is a strong positive correlation between IPv6 traffic and IPv4 traffic. Based on our findings on traffic patterns, we propose a new IPv6 traffic prediction model by combining the advantages of the statistical and deep learning models. In addition, our model would extract useful information from the corresponding IPv4 traffic to enhance the prediction. Based on two real-world datasets, it is shown that the proposed model outperforms eight baselines with a lower prediction error. In conclusion, our approach is helpful for network resource allocation and network management.

Keywords: ipv4; ipv6; traffic; prediction ipv6; ipv6 traffic

Journal Title: Future Internet
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.