LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Multi-Agent Approach to Binary Classification Using Swarm Intelligence

Photo by naoram from unsplash

Wisdom-of-Crowds-Bots (WoC-Bots) are simple, modular agents working together in a multi-agent environment to collectively make binary predictions. The agents represent a knowledge-diverse crowd, with each agent trained on a subset… Click to show full abstract

Wisdom-of-Crowds-Bots (WoC-Bots) are simple, modular agents working together in a multi-agent environment to collectively make binary predictions. The agents represent a knowledge-diverse crowd, with each agent trained on a subset of available information. A honey-bee-derived swarm aggregation mechanism is used to elicit a collective prediction with an associated confidence value from the agents. Due to their multi-agent design, WoC-Bots can be distributed across multiple hardware nodes, include new features without re-training existing agents, and the aggregation mechanism can be used to incorporate predictions from other sources, thus improving overall predictive accuracy of the system. In addition to these advantages, we demonstrate that WoC-Bots are competitive with other top classification methods on three datasets and apply our system to a real-world sports betting problem, producing a consistent return on investment from 1 January 2021 through 15 November 2022 on most major sports.

Keywords: agent approach; classification; woc bots; approach binary; agent; multi agent

Journal Title: Future Internet
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.