LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

On the Use of Knowledge Transfer Techniques for Biomedical Named Entity Recognition

Photo by ldxcreative from unsplash

Biomedical named entity recognition (BioNER) is a preliminary task for many other tasks, e.g., relation extraction and semantic search. Extracting the text of interest from biomedical documents becomes more demanding… Click to show full abstract

Biomedical named entity recognition (BioNER) is a preliminary task for many other tasks, e.g., relation extraction and semantic search. Extracting the text of interest from biomedical documents becomes more demanding as the availability of online data is increasing. Deep learning models have been adopted for biomedical named entity recognition (BioNER) as deep learning has been found very successful in many other tasks. Nevertheless, the complex structure of biomedical text data is still a challenging aspect for deep learning models. Limited annotated biomedical text data make it more difficult to train deep learning models with millions of trainable parameters. The single-task model, which focuses on learning a specific task, has issues in learning complex feature representations from a limited quantity of annotated data. Moreover, manually constructing annotated data is a time-consuming job. It is, therefore, vital to exploit other efficient ways to train deep learning models on the available annotated data. This work enhances the performance of the BioNER task by taking advantage of various knowledge transfer techniques: multitask learning and transfer learning. This work presents two multitask models (MTMs), which learn shared features and task-specific features by implementing the shared and task-specific layers. In addition, the presented trained MTM is also fine-tuned for each specific dataset to tailor it from a general features representation to a specialized features representation. The presented empirical results and statistical analysis from this work illustrate that the proposed techniques enhance significantly the performance of the corresponding single-task model (STM).

Keywords: entity recognition; task; deep learning; named entity; biomedical named

Journal Title: Future Internet
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.