LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Predicting Football Team Performance with Explainable AI: Leveraging SHAP to Identify Key Team-Level Performance Metrics

Photo by marvelous from unsplash

Understanding the performance indicators that contribute to the final score of a football match is crucial for directing the training process towards specific goals. This paper presents a pipeline for… Click to show full abstract

Understanding the performance indicators that contribute to the final score of a football match is crucial for directing the training process towards specific goals. This paper presents a pipeline for identifying key team-level performance variables in football using explainable ML techniques. The input data includes various team-specific features such as ball possession and pass behaviors, with the target output being the average scoring performance of each team over a season. The pipeline includes data preprocessing, sequential forward feature selection, model training, prediction, and explainability using SHapley Additive exPlanations (SHAP). Results show that 14 variables have the greatest contribution to the outcome of a match, with 12 having a positive effect and 2 having a negative effect. The study also identified the importance of certain performance indicators, such as shots, chances, passing, and ball possession, to the final score. This pipeline provides valuable insights for coaches and sports analysts to understand which aspects of a team’s performance need improvement and enable targeted interventions to improve performance. The use of explainable ML techniques allows for a deeper understanding of the factors contributing to the predicted average team score performance.

Keywords: team; team level; level performance; football; key team; performance

Journal Title: Future Internet
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.