LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Facile Synthesis of Highly Hydrophobic Cellulose Nanoparticles through Post-Esterification Microfluidization

Photo from wikipedia

A post-esterification with a high degree of substitution (hDS) mechanical treatment (Pe(hDS)M) approach was used for the production of highly hydrophobic cellulose nanoparticles (CNPs). The process has the advantages of… Click to show full abstract

A post-esterification with a high degree of substitution (hDS) mechanical treatment (Pe(hDS)M) approach was used for the production of highly hydrophobic cellulose nanoparticles (CNPs). The process has the advantages of substantially reducing the mechanical energy input for the production of CNPs and avoiding CNP aggregation through drying or solvent exchange. A conventional esterification reaction was carried out using a mixture of acetic anhydride, acetic acid, and concentrated sulfuric acid, but at temperatures of 60–85 °C. The successful hDS esterification of bleached eucalyptus kraft pulp fibers was confirmed by a variety of techniques, such as Fourier transform infrared (FTIR), solid state 13C NMR, X-ray photoelectron spectroscopy (XPS), elemental analyses, and X-ray diffraction (XRD). The CNP morphology and size were examined by atomic force microscopy (AFM) as well as dynamic light scattering. The hydrophobicity of the PeM-CNP was confirmed by the redispersion of freeze-dried CNPs into organic solvents and water contact-angle measurements. Finally, the partial conversion of cellulose I to cellulose II through esterification improved PeM-CNP thermal stability.

Keywords: highly hydrophobic; esterification; cellulose; cellulose nanoparticles; post esterification; hydrophobic cellulose

Journal Title: Fibers
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.