LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

CO2 Injection Effect on Geomechanical and Flow Properties of Calcite-Rich Reservoirs

Photo from wikipedia

Geologic carbon storage is considered as a requisite to effectively mitigate climate change, so large amounts of carbon dioxide (CO2) are expected to be injected in sedimentary saline formations. CO2… Click to show full abstract

Geologic carbon storage is considered as a requisite to effectively mitigate climate change, so large amounts of carbon dioxide (CO2) are expected to be injected in sedimentary saline formations. CO2 injection leads to the creation of acidic solution when it dissolves into the resident brine, which can react with reservoir rock, especially carbonates. We numerically investigated the behavior of reservoir-caprock system where CO2 injection-induced changes in the hydraulic and geomechanical properties of Apulian limestone were measured in the laboratory. We found that porosity of the limestone slightly decreases after CO2 treatment, which lead to a permeability reduction by a factor of two. In the treated specimens, calcite dissolution was observed at the inlet, but carbonate precipitation occurred at the outlet, which was closed during the reaction time of three days. Additionally, the relative permeability curves were modified after CO2–rock interaction, especially the one for water, which evolved from a quadratic to a quasi-linear function of the water saturation degree. Geomechanically, the limestone became softer and it was weakened after being altered by CO2. Simulation results showed that the property changes occurring within the CO2 plume caused a stress redistribution because CO2 treated limestone became softer and tended to deform more in response to pressure buildup than the pristine rock. The reduction in strength induced by geochemical reactions may eventually cause shear failure within the CO2 plume affected rock. This combination of laboratory experiments with numerical simulations leads to a better understanding of the implications of coupled chemo-mechanical interactions in geologic carbon storage.

Keywords: co2 injection; co2; injection effect; effect geomechanical; rock

Journal Title: Fluids
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.