LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Non-Modal Three-Dimensional Optimal Perturbation Growth in Thermally Stratified Mixing Layers

Photo from wikipedia

A non-modal transient disturbances growth in a stably stratified mixing layer flow is studied numerically. The model accounts for a density gradient within a shear region, implying a heavier layer… Click to show full abstract

A non-modal transient disturbances growth in a stably stratified mixing layer flow is studied numerically. The model accounts for a density gradient within a shear region, implying a heavier layer at the bottom. Numerical analysis of non-modal stability is followed by a full three-dimensional direct numerical simulation (DNS) with the optimally perturbed base flow. It is found that the transient growth of two-dimensional disturbances diminishes with the strengthening of stratification, while three-dimensional disturbances cause significant non-modal growth, even for a strong, stable stratification. This non-modal growth is governed mainly by the Holmboe modes and does not necessarily weaken with the increase of the Richardson number. The optimal perturbation consists of two waves traveling in opposite directions. Compared to the two-dimensional transient growth, the three-dimensional growth is found to be larger, taking place at shorter times. The non-modal growth is observed in linearly stable regimes and, in slightly linearly supercritical regimes, is steeper than that defined by the most unstable eigenmode. The DNS analysis confirms the presence of the structures determined by the transient growth analysis.

Keywords: growth; three dimensional; non modal; optimal perturbation; stratified mixing

Journal Title: Fluids
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.