LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Consistent Velocity-Pressure Coupling for Second-Order L 2 -Penalty and Direct-Forcing Methods

Photo by yanots from unsplash

The present work studies the interactions between fictitious-domain methods on structured grids and velocity-pressure coupling for the resolution of the Navier-Stokes equations. The pressure-correction approaches are widely used in this… Click to show full abstract

The present work studies the interactions between fictitious-domain methods on structured grids and velocity-pressure coupling for the resolution of the Navier-Stokes equations. The pressure-correction approaches are widely used in this context but the corrector step is generally not modified consistently to take into account the fictitious domain. A consistent modification of the pressure-projection for a high-order penalty (or penalization) method close to the Ikeno-Kajishima modification for the Immersed Boundary Method is presented here. Compared to the first-order correction required for the L 2-penalty methods, the small values of the penalty parameters do not lead to numerical instabilities in solving the Poisson equation. A comparison of the corrected rotational pressure-correction method with the augmented Lagrangian approach which does not require a correction is carried out.

Keywords: penalty; pressure coupling; order penalty; pressure; velocity pressure

Journal Title: Fluids
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.