LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Genome-Edited Plants: Opportunities and Challenges for an Anticipatory Detection and Identification Framework

Photo from wikipedia

It is difficult to trace and identify genome-edited food and feed products if relevant information is not made available to competent authorities. This results in major challenges, as genetically modified… Click to show full abstract

It is difficult to trace and identify genome-edited food and feed products if relevant information is not made available to competent authorities. This results in major challenges, as genetically modified organism (GMO) regulatory frameworks for food and feed that apply to countries such as the member states of the European Union (EU) require enforcement based on detection. An international anticipatory detection and identification framework for voluntary collaboration and collation of disclosed information on genome-edited plants could be a valuable tool to address these challenges caused by data gaps. Scrutinizing different information sources and establishing a level of information that is sufficient to unambiguously conclude on the application of genome editing in the plant breeding process can support the identification of genome-edited products by complementing the results of analytical detection. International coordination to set up an appropriate state-of-the-art database is recommended to overcome the difficulty caused by the non-harmonized bio-safety regulation requirements of genome-edited food and feed products in various countries. This approach helps to avoid trade disruptions and to facilitate GMO/non-GMO labeling schemes. Implementation of the legal requirements for genome-edited food and feed products in the EU and elsewhere would substantially benefit from such an anticipatory framework.

Keywords: genome edited; detection; framework; food feed; identification; genome

Journal Title: Foods
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.