In literature, different pectin extraction methods exist. In this study, two approaches starting from the alcohol-insoluble residue (AIR) of processing tomato are performed in a parallel way to facilitate the… Click to show full abstract
In literature, different pectin extraction methods exist. In this study, two approaches starting from the alcohol-insoluble residue (AIR) of processing tomato are performed in a parallel way to facilitate the comparison of pectin yield and the compositional and structural properties of the extracted pectin and residual cell wall material obtained. On the one hand, pectin is extracted stepwise using hot water, chelating agents and low-alkaline conditions targeting fractionation of the pectin population. On the other hand, an industrially relevant single-step nitric acid pectin extraction (pH 1.6) is performed. In addition to these conventional solvent pectin extractions, the role of high-pressure homogenization (HPH) as a physically disruptive treatment to facilitate further pectin extraction from the partially pectin-depleted fraction obtained after acid extraction is addressed. The impact of HPH on the pectin cell wall polysaccharide interactions was shown as almost two thirds of the residual pectin were extractable during the subsequent extractions. For both extraction approaches, pectin obtained further in the sequence was characterized by a higher molecular mass and a higher amount of rhamnogalacturonan I domains. The estimated hemicellulose and cellulose content increased from 56 mol% for the AIR to almost 90 mol% for the final unextractable fractions of both methods.
               
Click one of the above tabs to view related content.