LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The Physical Adsorption of Gelatinized Starch with Tannic Acid Decreases the Inhibitory Activity of the Polyphenol against α-Amylase

Photo from wikipedia

The effects of mixing orders of tannic acid (TA), starch, and α-amylase on the enzyme inhibition of TA were studied, including mixing TA with α-amylase before starch addition (order 1),… Click to show full abstract

The effects of mixing orders of tannic acid (TA), starch, and α-amylase on the enzyme inhibition of TA were studied, including mixing TA with α-amylase before starch addition (order 1), mixing TA with pre-gelatinized starch before α-amylase addition (order 2) and co-gelatinizing TA with starch before α-amylase addition (order 3). It was found that the enzyme inhibition was always highest for order 1 because TA could bind with the enzyme active site thoroughly before digestion occurred. Both order 2 and 3 reduced α-amylase inhibition through decreasing binding of TA with the enzyme, which resulted from the non-covalent physical adsorption of TA with gelatinized starch. Interestingly, at low TA concentration, α-amylase inhibition for order 2 was higher than order 3, while at high TA concentration, the inhibition was shown with the opposite trend, which arose from the difference in the adsorption property between the pre-gelatinized and co-gelatinized starch at the corresponding TA concentrations. Moreover, both the crystalline structures and apparent morphology of starch were not significantly altered by TA addition for order 2 and 3. Conclusively, although a polyphenol has an acceptable inhibitory activity in vitro, the actual effect may not reach the expected one when taking processing procedures into account.

Keywords: gelatinized starch; adsorption; order; inhibition; amylase; starch

Journal Title: Foods
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.