LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Inhibitory Mechanism of Baicalein on Acetylcholinesterase: Inhibitory Interaction, Conformational Change, and Computational Simulation

Photo from wikipedia

Alzheimer’s disease (AD) is the most prevalent chronic neurodegenerative disease in elderly individuals, causing dementia. Acetylcholinesterase (AChE) is regarded as one of the most popular drug targets for AD. Herbal… Click to show full abstract

Alzheimer’s disease (AD) is the most prevalent chronic neurodegenerative disease in elderly individuals, causing dementia. Acetylcholinesterase (AChE) is regarded as one of the most popular drug targets for AD. Herbal secondary metabolites are frequently cited as a major source of AChE inhibitors. In the current study, baicalein, a typical bioactive flavonoid, was found to inhibit AChE competitively, with an associated IC50 value of 6.42 ± 0.07 µM, through a monophasic kinetic process. The AChE fluorescence quenching by baicalein was a static process. The binding constant between baicalein and AChE was an order of magnitude of 104 L mol−1, and hydrogen bonding and hydrophobic interaction were the major forces for forming the baicalein−AChE complex. Circular dichroism analysis revealed that baicalein caused the AChE structure to shrink and increased its surface hydrophobicity by increasing the α-helix and β-turn contents and decreasing the β-sheet and random coil structure content. Molecular docking revealed that baicalein predominated at the active site of AChE, likely tightening the gorge entrance and preventing the substrate from entering and binding with the enzyme, resulting in AChE inhibition. The preceding findings were confirmed by molecular dynamics simulation. The current study provides an insight into the molecular-level mechanism of baicalein interaction with AChE, which may offer new ideas for the research and development of anti-AD functional foods and drugs.

Keywords: simulation; ache; inhibitory mechanism; mechanism baicalein; interaction

Journal Title: Foods
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.